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Effect of boundary conditions on fluctuations measures
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A change in boundary conditions~BC! from uniform Dirichlet to nonidentical BC on the edges of a
triangular billiard often brings about a dramatic change in quantum spectral fluctuations. We provide a theory
for this based on periodic orbits and show that nonidentical BC on adjacent edges can lead to aquantum
splitting of periodic orbit families, which results in a significant change in the form factor. Thus, the classical
spectrum alone cannot determine quantum correlations.
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Recent studies@1,2# on fluctuation measures in chaot
systems seem to indicate that the quantum correlations
fully determined by the classical spectrum of the Perr
Frobenius operator@3#. Using different approaches, Agam
Altshuler, and Andreev~AAA ! @1# and Bogomolny and
Keating ~BK! @2# show that the diagonal and off-diagon
parts of the density-density correlation are related to a pu
classical quantity, which under some approximation redu
to the classicalz function @3#.

There are several fallouts of the AAA-BK theory. On
that has been scrutinized recently by Prange@4# concerns
possible deviations from random matrix theory results a
the conditions under which this can be observed. Anot
consequence~and one that is of relevance here! is the ab-
sence of parity effects in fluctuation measures. In ot
words, the AAA-BK theory predicts that quantum system
having the same classical dynamics exhibit identical qu
tum correlations. There is, however, a tacit assumption in
BK approach which leads us to this conclusion: that deg
erate periodic orbits with identical actions and stabilities a
have the same quantum phase. There can be instances,
ever, when this is not true. For example, arithmetic billiar
abound in degenerate periodic orbits and exhibit Pois
fluctuations when the boundary conditions are Dirichlet@5#.
However, when the boundary conditions are not identica
Dirichlet, pairs of degenerate periodic orbits can have pha
differing by p, leading to a net decrease in the form fac
@6#.

The effect of boundary conditions can be even more s
nificant in planar triangular billiards, and we shall deal w
these henceforth. Of these, the ones that are integrable
internal angles of the formp/ni and in all these cases, de
generacies exist in the classical periodic orbit actions of
pologically distinct orbits leading to nonuniversal spect
fluctuations@7,8#. Thus, the spectral rigidity@9#, D3(L), in-
creases with a slope larger than115 @10# in the regionL
!Lmax, whereLmax is determined by the frequency of slow
est oscillation in the quantum densityr(E) @11#.

Generic rational triangles, on the other hand, have inte
angles of the formpmi /ni , whereP i 51

3 miÞ1. These are
referred to as pseudointegrable~PI! billiards @12–14#. As in
integrable systems, their invariant surface in phase spac
two-dimensional but the topology is that of a sphere w
multiple holes and not a torus@15#. This difference leads to a
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rather dramatic change in the quantum eigenstates.
eigenfunctions, for example, often exhibit irregular nod
patterns and a Gaussian amplitude distribution@16#, while
fluctuation measures display a behavior@7,17#, that ranges
from the integrable@7# to the chaotic@18–20,7# limits.

There are several interesting questions concerning qu
tum fluctuations that polygonal billiards throw up. A poin
that has often been debated is the role of diffractive perio
orbits in determining spectral measures@21#. Admittedly, the
quantum spectrum does know about these orbits@22#, though
its importance in determining spectral measures is poss
negligible @23#. A related question concerns the effect
boundary conditions on spectral fluctuations. To illustra
this, we refer to Fig. 1 where the rigidity,D3 , is plotted as a
function of L for the right triangle~p/2, p/3, p/6! with ~a!
Dirichlet boundary condition on all three edges and~b!

FIG. 1. D3(L) for the ~p/2, p/3, p/6! triangle with~a! Dirichlet
boundary conditions on all edges~n! and ~b! Neumann boundary
conditions on the edges enclosing the right angle and Dirichlet
the third ~L!. The averaging interval is@en2De, en1De# with
en5800 andDe5300. The straight line and the smooth curve a
respectively, the Poisson (L/15) and GOE results.
R3699 © 1998 The American Physical Society
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Neumann boundary condition on the edges enclosing
right angle and Dirichlet BC on the third. One might arg
that the crossover is related to the fact that case~a! is inte-
grable while~b! is not @24#. We have thus verified that ther
is indeed a shift with boundary conditions in genui
pseudo-integrable enclosures such as the (p/2,3p/10,p/5)
triangle.

At first glance, it may seem that apart from an over
phase factor, the contribution of each periodic orbit family
identical for the two cases of the~p/2, p/3, p/6! triangle.
We shall demonstrate here that this is not the case. To
end, consider the family of periodic orbits shown in Fig.
Orbits F1 and F2 belong to the same familyclassically
though the quantum phase accumulated by these differ bp
when edges 1 and 3 have Neumann boundary conditions@we
refer to this as case~b!, while case~a! denotes Dirichlet BC
on all edges#. In other words, the family of periodic orbit
split up in thequantum-mechanicalsense in case~b!, while
case~a! preserves the full classical family. The semiclassi
density of states,

r~E!.rav~E!1A 1

8p3 (
p

(
r 51

`
ap

Akrl p

3cosS krl p2
p

4
2rnpp D ~1!

for the two cases are thus distinct. In the above,E5k2 while
ap refers to the area occupied by a primitive periodic or
family characterized by their lengthl p andthe number, np of
reflections from Dirichlet edges. Equation~1! has only the
leading order fluctuation in the density of states. It negle
the contribution of isolated periodic orbits and diffractiv
periodic orbits. Also note that orbits that occur in famili
necessarily undergo an even number of reflections from
edges so that the net phase in case~a! is zero.

FIG. 2. Two periodic orbitsF1 ~thick line! andF2 belonging to
the same classical family.
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With this background, we are now ready to explore t
effect of BC on spectral measures. For two-point correlatio
such asD3(L) and S2(L), the central object is the form
factor f(T)5*2`

` R2(x)exp(ixT/\)dx, where R2(x) is the
two-point spectral correlation function@R2(x)5^r(E
1x)r(E)&#. Expressed in terms of periodic orbits,f(T)
5^( i( jAiAj cos(Si2Sj)d(T2(Ti1Tj)/2)& where Ai5Cai /
Akl i for marginally unstable billiards,Si5kl i2p/42nip,
Ti5]Si /]E andC5A1/(32p3).

It is customary to analyze the diagonal and off-diago
parts off(T) separately and we first show that for case~b!,
the diagonal contribution fD(T)5^( iAi

2d(T2Ti)& is
smaller as compared to case~a!. Let us assume that the fam
ily labeled by i splits up quantum mechanically in case~b!
into two parts, occupying areasai1 and ai2 respectively
whereai11ai25ai . Its contribution tofD(T) is thus pro-
portional toai1

2 1ai2
2 , while in case~a!, it is proportional to

ai1
2 1ai2

2 12ai1ai2 . Further, since the two parts of the cla
sical family have a different phase in case~b!, there is an
off-diagonal ~OD! contribution from within this classica
family. Its magnitude is proportional to 2ai1ai2 cos(p) so
that the net decrease in contribution of a single classical f
ily is proportional to 4ai1ai2 .

Note that the off-diagonal part of the form factor has cro
contributions as well where parts of two distinct classic
families are involved. When the classical dynamics is in
grable and no QS occurs, the OD contributions average
zero in the absence ofdegeneraciesamongst periodic orbit
actions. Thus, the diagonal contribution equals
asymptotic value off(T), which equalsrav/2p. This
asymptotic law is referred to as the semiclassical sum
@11#. Even in the presence of QS, the semiclassical sum
holds. Thus, cross terms involving parts of distinct classi
families do contribute in case~b!. In summary then, the fol-
lowing comparison between cases~a! and ~b! can be made
when there areno degeneraciesin the lengths of topologi-
cally distinct periodic orbits. ForT!TH , the form factor
equals

f~T!5K C2(
i

ai
2

kl i
d~T2Ti !L case ~a!, ~2!

5K C2(
i

$ai~2a i21!%2

kl i
d~T2Ti !L case ~b!,

~3!

while in both cases,f(T)5rav(E)/(2p) as T→`. Here
ai15a iai , ai25(12a i)ai andTH is the Heisenberg time.

Note that in an integrable enclosure, the areasai are iden-
tical for almost all orbit families so that for case~a!, a
straightforward application of the proliferation law for per
odic orbit families leads to the conclusion thatf(T) is con-
stant and equalsrav(E)/2p. For case~b!, however, the fac-
tor (2a i21)2 varies with the orbit and depending on th
splitting mechanism,f(T) may be explicitlyT dependent
even in an ‘‘integrable’’ enclosure@25#.

In order to concretize these notions, let us take anot
look at the (p/2,p/3,p/6) enclosure of Fig. 1. For this inte
grable billiard, the length spectrum can be expressed in te
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of winding numbers on tori and it is easy to verify that the
exists degeneracies in the lengths of topologically disti
periodic orbits. For case~a! then, the sum in Eq.~2! is over
distinct lengthsl i instead of topologically distinct orbits
Correspondingly, the areaai should now be interpreted a
the total area occupied by all orbit families having lengthl i .
An immediate consequence is thatf(T) is no longer a con-
stant for all T since the degree of degeneracy varies w
length @8#. A plot of I (t)5 2p/rav *f(t8)dt8 with respect
to t5T/(2prav) is provided in Fig. 3. For generic inte
grable systems without degeneracies in periodic o
lengths,I (t)5t, while in the present case, one observe
nonlinear increase.

For case~b!, the splitting mechanism needs to be inco
porated and for this example, the ratio in which certain or
families split up has been arrived at by Shudo@26#. As be-
fore, the sum in Eq.~3! now refers to distinct lengths while
the effective areaai(2a i21) ~denoted byāi! is the sum of
all areas occupied by degenerate orbit familiesweighted ap-

propriately by the phases. Thusāi5(k(21)nkak , whereak
is the area occupied by a family having lengthl i and which
undergoesnk reflections from the Dirichlet edge.

Once more, rather than the asymptotic proliferation r
of periodic orbit families, it is the variation ofāi with length
@27# which determines the form factor. A plot ofI (t) for
case~b! ~see Fig. 3! reveals a nonlinear increase having
smaller overall slope and a form that is distinct from case~a!.
Thus, a change in BC from uniform Dirichlet to nonunifor
BC leads to a significant change in the form factor. T
difference indeed shows up in the spectral rigidityD3(L). In
Fig. 4, we compare the predictions of periodic orbit theo
with the exact~numerical! values ofD3 in the range 4<L
<10 @28# for cases~a! and~b!. While the agreement for cas
~a! is excellent, the predictions of periodic orbit theory ca
ture the overall behavior in case~b!.

FIG. 3. Plot ofI (t) for the ~p/2, p/3, p/6! billiard. The curve
marked~integrable! is for case~a!, while ~PI! represents case~b!.
Also shown are three lines with slopes 1.0, 0.85, and 0.45 ma
~c!, ~d!, and~e!, respectively. For averaging, see Fig. 1.
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The discussion so far holds for all polygonal billiard
where adjacent edges enclosing an angle of the formp/ni
have nonidentical~NI! boundary conditions. In such case
periodic orbit families do not split up at this angleclassi-
cally, though as demonstrated earlier, they can split upsemi-
classically. For angles of the formmip/ni (mi.1), how-
ever, orbit families do split up classically and traver
different paths, thereby reducing the extent of periodic or
families. Thus, different sets of boundary conditions on
result in an overall phase factor for each family and hence

d

FIG. 4. The chain and dotted curves are the exact value
D3(L) for case~a! and~b!, respectively. The diamonds and squar
are estimates obtained using periodic orbits for case~a! and ~b!,
respectively. For averaging, see Fig. 1.

FIG. 5. Rigidity for the irrational triangle~p/2, p/A9.1!. Case
~a! exhibits Poisson fluctuations~L!, while case~b! shows GOE
fluctuations~1! whenen5500 andDe5150.
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not significantly affect spectral measures. In exceptio
cases, however, the effect of boundary conditions can
significant. This can be observed when the angle is of
form mip/ni (mi.1) but close to anintegrablewedge. As
an example, consider the rigidityD3(L) for the irrational
triangle~p/2, p/A9.1!, which is close to the integrable~p/2,
p/3! enclosure~Fig. 5!. Case~a! clearly exhibits fluctuations
close to Poisson, while case~b! shows typical GOE fluctua
tions for the energy range considered. Note that the trian
has infinite genus though over short time scales~less than the
Heisenberg time! the dynamics hovers around its integrab
counterpart, while even after 109 reflections from the bound
ary, parts of the constant energy surface remain unexplo
The twononintegrableacute angles, however, serve to sp
up periodic orbit families though the lengths of the resulti
families remain close to that of the original family in th
integrable enclosure. This subtle reorganization of perio
orbit families leads to Poisson fluctuations in case~a!, since
the degeneracies in orbit actions which exist for the~p/2,
p/3! triangle get lifted in the~p/2, p/A9.1! enclosure. On
tt.
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the other hand, when the lifting of degeneracies is accom
nied by a difference in phase between twosplit families@case
~b!#, the change is significant and leads to GOE-like fluctu
tions for the energy range considered@29#.

In summary, we have demonstrated that a change f
uniform Dirichlet to nonidentical boundary conditions on th
edges of triangular billiard can lead to significant changes
fluctuation measures. This can be observed when the a
enclosed by the edges with NI boundary conditions is of
form p/n or sufficiently close to it@30#. The mechanism
involved isquantum splittingdue to which adjacent families
having ~almost! identical lengths acquire different phase
leading to a significant drop in contribution from both th
diagonal and off-diagonal terms in the form factor. In pa
ticular, we have shown that it is possible to explain the sp
tral fluctuations of the~p/2, p/3, p/6! triangle when the
boundary conditions are not identically Dirichlet using pe
odic orbit theory. We conclude by noting that there ex
quantum systems whose density correlations cannot be d
mined fully by the classical spectrum.
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